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Abstract
The stochastic resonance in an over-damped linear system due to dichotomous
noise modulated by a bias signal is studied in detail. By the theory of signal-to-
noise ratio (SNR) and the Shapiro–Loginov formula, the exact expressions of
the first two moments and SNR for the output to the asymmetric dichotomous
noise input are obtained. It is found that each curve of the SNR versus
the multiplicative noise intensity exhibits a mono peak and the conventional
stochastic resonance appears, which is absent for the case of noise and periodic
signal introduced additively. Meanwhile, the SNR is a non-monotonic function
of the signal frequency or the correlation time of noise, and the bona fide
stochastic resonance (SR) and SR in a broad sense exist. Moreover, the
SNR depends on the additive noise intensity, cross-correlation strength and
asymmetry of multiplicative noise.

PACS number: 05.40.−a

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Benzi et al [1] and Nicolis et al [2] first proposed ‘stochastic resonance’ (SR) to explain the
periodic switching of the earth’s climate between ice ages and warm ages. SR is a phenomenon
in which the response of a dynamical system to an input signal is enhanced by the addition
of an optimal amount of noise. This counterintuitive phenomenon attracted lots of people and
has been extensively investigated both theoretically and experimentally [3–8]. Fauve et al [3]
and McNamara et al [4] observed SR in an experiment of the Schmitt trigger and the bistable
ring laser. McNamara et al [4, 5] suggested a two-state model and obtained the SNR under
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adiabatic limit to characterize SR. Dykman et al [6] and Hu et al [7] introduced the linear-
response theory and perturbation theory to investigate SR. Zhou and Moss [8] employed the
residence-time distribution to explain SR as a resonance synchronization phenomenon. But
most of these studies considered the nonlinearity to be an essential ingredient for the presence
of SR. However, in recent years SR was also found in linear systems driven by multiplicative
coloured noise or dichotomous noise [9–13]. Berdichevsky et al [11] pointed out that the SNR
is a non-monotonic function of some characteristics of the noise, but not of the noise intensity.
So we care about whether or not the conventional SR appearing in the linear system, that is,
the SNR, is a non-monotonic function of noise intensity.

Generally, the external noise and the weak periodic force are introduced additively in most
of the above-mentioned papers. However, noise modulated by periodical signal does occur at
the output of amplifiers in optics or radio astronomy and has an important effect. So Dykman
et al [14] studied an asymmetric bistable system when the noise and periodic signal were
introduced multiplicatively, namely, signal-modulated noise. They detected the existence of
SR in such an asymmetric bistable system and verified their results by an electronic analog
experiment. In practice there are two kinds of signal-modulated noise: one is the direct
signal modulation; the other is the bias signal modulation. The bias signal modulation
is widely applied to the modern communication system [15] and improves the quality of
communication. And the modulated process is operated in the linear region for avoiding
distortion of a modulation signal. Yet only few theoretical papers involve the effect of the bias
signal-modulated noise on the stochastic linear system.

In this paper, we investigate the stochastic resonance of an over-damped linear system
with bias signal-modulated noise and find some novel nonlinear phenomena. The paper is
organized as follows. In section 2, we obtain the exact expressions of the first two moments
and the signal-to-noise ratio of the linear system for the case of asymmetric dichotomous
noise. In section 3, by analysing the numerical results we provide a discussion and draw some
conclusions. It should be pointed out that the SR has been introduced in a broad sense in [11];
so here we only need to investigate the non-monotonic behaviour of the output signal as a
function of noise intensity and the other characteristics of the noise. Bona fide SR means that
the curve of SNR exhibits a resonance peak with increasing frequency of signal. Moreover,
the conventional SR means that the curve of SNR exhibits a single peak with the increase of
noise intensity. Here the expression of SNR can be applied to arbitrary noise intensity and
signal amplitude without being restricted to the condition of adiabatic limit.

2. The output signal-to-noise ratio of a linear system with bias signal-modulated
dichotomous noise

Consider an over-damped linear system with an input dichotomous noise modulated by a bias
signal, the output of which is described by the following equation:

dx

dt
= −(a + ξ(t))x +

(
α +

1

2
A0 cos �t

)
η(t), (1)

where A0 is the amplitude of a periodic signal, � is the frequency, α can only take either of
the two values 0 and 1; α = 0 denotes the direct signal-modulated noise and α = 1 denotes
the bias signal-modulated noise. ξ(t) and η(t) are dichotomous noise [19], namely a kind of
asymmetric, two-state random process, with zero mean and correlation functions described as
follows:

〈ξ(t)〉 = 〈η(t)〉 = 0, 〈ξ(t)ξ(t ′)〉 = σ1 exp(−λ|t − t ′|),
〈η(t)η(t ′)〉 = σ2 exp(−λ|t − t ′|). (2)
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Here ξ(t) and η(t) only have two values respectively. For example

ξ(t) ∈ {M1,−N1}, σ1 = M1N1, λ = p1 + p2, �1 = M1 − N1,

η(t) ∈ {M2,−N2}, σ2 = M2N2, λ = q1 + q2, �2 = M2 − N2,
(3)

where p1 is the transition rate of ξ(t) from M1 to −N1 and p2 is the reverse rate. q1 is the
transition rate of η(t) from M2 to −N2 and q2 is the reverse one. �1 and �2 denote the
asymmetry of the dichotomous noise ξ(t) and η(t) respectively.

Now we assume that ξ(t) and η(t) are actually of the same random source; then some
form of correlation exists between them, i.e.

〈ξ(t)η(t ′)〉 = 〈η(t)ξ(t ′)〉 = σ3 exp(−λ|t − t ′|), (4)

where σ3 = σ1r +σ2q, r and q are confined to the 0–1 interval [16], measuring the contribution
of each individual noise respectively.

Taking the average on equation (1), and after multiplying equation (1) by 2x then taking
the average, we obtain the first two moments in the following form:

d〈x〉
dt

= −a〈x〉 − 〈ξ(t)x〉, (5)

d〈x2〉
dt

= −2a〈x2〉 − 2〈ξ(t)x2〉 + (2α + A0 cos(�t))〈xη(t)〉. (6)

Using the Shapiro–Loginov formula [17], we obtain the following equation:

d〈ξx〉
dt

=
〈
ξ

dx

dt

〉
− λ〈ξx〉. (7)

Multiplying equation (1) by ξ(t) and combining it with equation (7), we obtain

d〈ξx〉
dt

= −(a + λ)〈ξx〉 − 〈ξ 2x〉 +

(
α +

1

2
A0 cos(�t)

)
σ3. (8)

Since equation (8) contains the moment 〈ξ 2x〉, we use the properties of dichotomous noise
ξ(t) to decouple this term:

ξ 2(t) = σ1 + �1ξ(t). (9)

According to equation (9), the lower-order moment 〈ξ(t)x〉 can express the higher-order one
〈ξ 2x〉 as follows:

〈ξ 2x〉 = σ1〈x〉 + �1〈ξx〉. (10)

Substituting equation (10) into equation (8), one obtains the following equation:

d〈ξx〉
dt

= −(a + λ + �1)〈ξx〉 − σ1〈x〉 +

(
α +

1

2
A0 cos(�t)

)
σ3. (11)

By virtue of equations (5) and (11), we obtain the differential equations of unknown
functions 〈x〉 and 〈ξx〉:
d

dt

[ 〈x〉
〈ξx〉

]
=

[ −a −1
−σ1 −(a + λ + �1)

] [ 〈x〉
〈ξx〉

]
+

[
0(

α + 1
2A0 cos �t

)
σ3

]
. (12)

By solving equation (12), one obtains the asymptotic value at t → ∞ of the first
moment 〈x〉,

〈x〉 = A0 σ3
f1 cos(�t) + f2 sin(�t)

2f3
− αf4, (13)
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where

f1 = �2 − r1r2, f2 = −�(r1 + r2), f3 = (
�2 + r2

2

)(
�2 + r2

1

)
, f4 = σ3

r1r2
,

r1,2 = a + ε1,2 = a +
λ + �1

2
±

√
(λ + �1)2

4
+ σ1.

Using the similar method and the Shapiro–Loginov formula, we obtain the following
differential equations to get the second moment 〈x2〉:
d〈ξx2〉

dt
= −(2a + λ + 2�1)〈ξx2〉 − 2σ1〈x2〉 + (2α + A0 cos(�t))〈ξηx〉, (14)

d〈xη〉
dt

= −(a + λ)〈xη〉 − 〈ξηx〉 +

(
α +

1

2
A0 cos(�t)

)
σ2, (15)

d〈ξηx〉
dt

= −(a + �1 + 2λ)〈ξηx〉 − σ1〈xη〉 +

(
α +

1

2
A0 cos(�t)

)
σ3�2. (16)

According to equations (6) and (14)–(16), one obtains four differential equations of the
unknown functions 〈x2〉, 〈ξx2〉, 〈xη〉 and 〈ξηx〉. Since the solution of these equations is rather
complicated, here we give only the asymptotic value (t → ∞) of the second moment:

〈x2〉st = {α[(a + λ/2 + �1)(σ2f5 + �2σ3f6) − (ε2σ2f5 + ε1�2σ3f6)]

− (ε2σ2f5 + ε1�2σ3f6)A0/2}
×{

2
(
r2

3 + �2)(r2
4 + �2)[a(2a + λ + 2�1) − 2σ1]

}−1
, (17)

where

r3,4 = 2a +
λ + 2�1

2
±

√
(λ + 2�1)2

4
+ 4σ1, f5 = α

r2 + λ
+

A0�

2[(r2 + λ)2 + �2]
,

f6 = α

r1 + λ
+

A0�

2[(r1 + λ)2 + �2]
,

and εi, ri(i = 1, 2) were defined earlier.
Our aim is to obtain the stationary correlation function 〈x(t + τ)x(t)〉. Therefore, from

the linear equation (1) we can present the following formula:

x(t + τ) = x(t)g(τ ) exp(−aτ) +
A0

2

∫ τ

0
exp(−av)h(v) cos[�(t + τ − v)] dv

+ α

∫ τ

0
exp(−av)h(v) dv, (18)

where

g(v) =
〈
exp

[
−

∫ v

0
ξ(u) du

]〉
, h(t − v) =

〈
η(v) exp

[
−

∫ t

v

ξ(u) du

]〉
.

Equation (18) contains several integrals that involve the average value of the exponential
of an integral of multiplicative noise. According to the defined master equation of the non-
Markovian dichotomous noise and equations (2)–(4), the following approximation [18–20]
has been used to derive the correlation function 〈x(t + τ)x(t)〉. Here the approximation is
valid for arbitrary t > v,

g(v) = ε1

ε1 − ε2
exp[−ε2v] − ε2

ε1 − ε2
exp[−ε1v], (19)

h(t − v) = σ3

λ
exp[−λ(t − v) − 1]g(t − v). (20)



Stochastic resonance in linear system due to dichotomous noise modulated by bias signal 3737

Multiplying equation (18) by x(t) and performing average, we obtain the expression of
the correlation function

〈x(t + τ)x(t)〉 = 〈x2〉st g(τ) exp(−aτ) +
〈x〉A0σ3 exp(−at − 1)

2λ(ε1 − ε2)

× [f7 cos(�t) + f8 sin(�t)] + α〈x〉
∫ τ

0
exp(−av)h(v) dv, (21)

where

f7 = exp[−(λ − r2)t]
−ε1(λ − r2)f12 + ε1� sin(�τ)

(λ − r2)2 + �2

+ exp[−(λ − r1)t]
ε2(λ − r1)f10 − ε2� sin(�τ)

(λ − r2)2 + �2
, (22)

f8 = exp[−(λ − r2)t]
ε1(λ − r2) sin(�τ) + ε1�f11

(λ − r2)2 + �2

+ exp[−(λ − r1)t]
−ε2(λ − r1) sin(�τ) − ε2�f9

(λ − r2)2 + �2
(23)

and

f9,10 = cos(�τ) ± exp[(λ − r1)τ ], f11,12 = cos(�τ) ± exp[(λ − r2)τ ]. (24)

According to expression (21), the asymptotic value of the correlation function is obtained
by averaging equation (21) over the period 2π/�:

〈x(t + τ)x(t)〉st = �

2π

∫ 2π
�

0
〈x(t)x(t + τ)〉 dt = 〈x2〉st g(τ) exp(−aτ) +

A2
0σ

2
3

4λ(ε1 − ε2)f3

×{ϕ5[f1ϕ1(λ + ε2)
2 − �(λ + ε2)(f1ϕ3 + f2ϕ1) + 2�2(f1ϕ1 − f2ϕ3)]

+ ϕ6[f1ϕ2(λ + ε1)
2 − �(λ + ε1)(f1ϕ4 + f2ϕ2) + 2�2(f1ϕ2 − f2ϕ4)]}

−αf4σ3/λ(ε1 − ε2)

{
r1 e−1

a + λ + r2
[1 − exp{−(a + λ + r2)τ }]

− r2 e−1

a + λ + r1
[1 − exp{−(a + λ + r1)τ }]

}
, (25)

where

ϕ1 = −ε1(λ − r2)f12 + ε1� sin(�τ)

(λ − r2)2 + �2
, ϕ2 = ε2(λ − r1)f10 − ε2� sin(�τ)

(λ − r2)2 + �2
,

ϕ3 = ε1(λ − r2) sin(�τ) + ε1�f11

(λ − r2)2 + �2
, ϕ4 = −ε2(λ − r1) sin(�τ) − ε2�f9

(λ − r2)2 + �2
,

ϕ5 = 1

(λ + ε2)[(λ + ε2)2 + 4�2]
, ϕ6 = 1

(λ + ε1)[(λ + ε1)2 + 4�2]
.

We perform the Fourier transform on equation (25) and obtain the power spectrum S(ω)

for positive ω as follows:

S(ω) =
∫ ∞

−∞
〈x(t)x(t + τ)〉st exp(−iωτ) dτ

= S0δ(ω) + S1(ω) + S2(ω)δ(ω − �) + (r1 ↔ r2), (26)
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where

S0 = 2 e−1παf4σ3

λ(ε1 − ε2)2

[
r2

a + λ + r1
− r1

a + λ + r2

]
,

S1(ω) = 〈x2〉st

ε1 − ε2

[
ε2r1

r2
1 + ω2

− ε1r2

r2
2 + ω2

]
(27)

− A2
0σ

2
3 [ϕ5ε1(f1A1 + f2�A2) + ϕ6ε2(f1A3 + f2�A4)]

4λf3(ε1 − ε2)[(λ − r2)2 + �2]

+
2 e−1αf4σ3

λ(ε1 − ε2)

[
a + λ + r2

(a + λ + r2)2 + ω2
− a + λ + r1

(a + λ + r1)2 + ω2

]
,

S2(ω) = πA2
0σ

2
3 [ϕ5ε1(f1B1 + f2�B2) + ϕ6ε2(f1B3 + f2�B4)]

4λf3(ε1 − ε2)[(λ − r2)2 + �2]
. (28)

The symbols in equations (26)–(28) are given by the following expressions:

A1 = �2(ε2 + 2r2 − λ) + (λ + ε2)
2(r2 − λ),

A2 = 2�2 + (λ + ε2)(−r2 + λ),

A3 = �2(−ε1 − 2r1 + λ) + (λ + ε1)(−r1 + λ),

A4 = −2�2 + (−λ + r1)(λ + ε1),

B1 = �2(−ε2 + 2r2 + 3λ) + ε2
2(r2 − λ) + λ(λ + ε2)(r2 − 2λ),

B2 = −2�2 + (λ + ε2)(−r2 + λ),

B3 = �2(ε1 − 2r1 + 3λ) + ε2
1(−r1 + λ) + λ(λ + 2ε1)(−r1 + λ),

B4 = 2�2 + (−λ + r1)(ε1 + λ).

Here S0 is the power density at zero frequency, S1(ω) is the power density connected
with the noise background, S2(ω) is the power density associated with the output signal and
(r1 ↔ r2) is obtained from the third term by interchanging r1 and r2. We give the expression
of signal-to-noise ratio R as the ratio of the output power densities of the signal and the noise
background at the frequency ω = �. Therefore, the signal-to-noise R is

R =
∫ ∞

0 S2(ω)δ(ω − �) dω

S1(ω = �)
, (29)

where Si(ω) (i = 1, 2) were defined earlier.
It should be pointed out that equation (29) is obtained by using approximations (19) and

(20), but its applicability is not restricted within small noise intensity and amplitude of signal.

3. Discussion and conclusion

According to expression (29) of SNR, we will discuss the influences of noise and signal on
the signal-to-noise ratio and draw some conclusions.

3.1. Discussion

By virtue of the equation of the signal-to-noise ratio (29), the effects of the multiplicative
noise intensity σ1, frequency � of an external field, asymmetry �1 of multiplicative noise and
the correlation time τ = λ−1 of noise on the SNR are discussed through figures 1–5.
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Figure 1. SNR as a function of the multiplicative noise intensity σ1 for α = 1, a = 2, A = 1,
σ2 = 2, σ3 = 1, �2 = 1,� = 1, λ = 1 with varied �1.

Figure 2. SNR as a function of � for α = 1, a = 2, A = 1, σ1 = σ3 = 1, σ2 = 2, �2 = 1, λ = 1
with varied �1.

In figure 1, we plot the curve of SNR versus the multiplicative noise intensity σ1 with
varied asymmetry �1 of multiplicative noise. The curve exhibits a maximum and SNR is a
non-monotonic function of σ1; the conventional stochastic resonance phenomenon occurs in
this case, which is absent in [11]. At the same time, the SNR increases with the increase
of �1.

The curve of the SNR versus the frequency � with varied asymmetry �1 of multiplicative
noise is plotted in figure 2. It is seen that the curves exhibit a pronounced single peak, and
the bona fide stochastic resonance exists. The SNR decreases with the increase of �1 when
� < 0.84, while the SNR increases with the increase of �1 when � � 0.84. Therefore, the
asymmetry �1 of multiplicative noise reduces the SNR for small frequency (� < 0.84), but
enhances the SNR for large frequency (� � 0.84). The SNR increases with the increase of
�1 in figure 1 for � = 1(>0.84), so figure 1 is consistent with figure 2.
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Figure 3. SNR as a function of frequency � for α = 1, a = 2, A = 1, σ2 = 2, σ1 = 1, �1 = 1,
�2 = 1, λ = 1 with varied σ3.

Figure 4. SNR as a function of τ for α = 1, � = 1, a = 2, A = 1, σ2 = 2, σ1 = 1, �1 = 1,
�2 = 1 with varied σ3.

Figure 3 is a plot of the SNR as a function of the frequency � with different cross-
correlation strength σ3 between the noises ξ(t) and η(t). We show that the SNR is a non-
monotonic function of �. The SNR increases with the increase of σ3. However, the increment
of the SNR becomes smaller and smaller when σ3 becomes larger. So the SNR increases
monotonically with increasing σ3 at first, but finally becomes saturated.

In figure 4, we plot the curves of the SNR versus the correlation time τ of noise with varied
σ3. Each of the curves exhibits a maximum and non-monotonic behaviour, so the stochastic
resonance occurs in a broad sense. The SNR increases with the increase of σ3. From figures 3
and 4, the cross-correlation strength σ3 between the noises ξ(t) and η(t) can enhance the SNR
and improve the output signal.

The curve of the SNR versus the correlation time τ of noise with varied σ2 is given in
figure 5. When we fix the intensity of multiplicative noise and the cross correlation strength
between the two noises, the SNR decreases with the increase of additive noise intensity σ2.
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Figure 5. SNR as a function of τ for α = 1, a = 2, A = 1, σ1 = 1, σ3 = 0.5, �1 = 1,
�2 = 1, � = 1 and with varied σ2.

That is to say that the additive noise weakens the SNR and has a destructive effect on improving
the output signal.

3.2. Conclusions

We have studied SR in an over-damped linear system with multiplicative noise, signal-
modulated noise and additive noise. Appling the theory of SNR and Shapiro–Loginov formula,
the expression of SNR is derived for asymmetric dichotomous noise. It is found that three
different forms of stochastic resonance exhibit in this linear system: conventional SR, bona
fide SR and SR in the broad sense. Moreover, the SNR decreases with the increase of �1

when � < 0.84 while the SNR increases with the increase of �1 when � � 0.84. The SNR
increases with increasing σ3, but decreases with increasing σ2.

It is important to establish the existence of the conventional SR, not just SR in the broad
sense, in such a linear system. Moreover, the noise η(t) in equation (1) is divided into two
parts: one is the additive noise, and the other is modulated by periodic signal. So the processes
are different for direct signal modulation and bias signal modulation. We have studied the
former in another paper.

The modulated noise can be used in many fields, such as optical communication and radio
astronomy, to describe the fluctuation. Therefore the results in this paper provide a theoretical
basis to the study of optical amplifier and optical communication systems.
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